Basic Elec. Engr. Lab ECS 210

Dr. Prapun Suksompong

prapun@siit.tu.ac.th

Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Friday 14:00-16:00

Final Exam

- 2 Parts: A and B.
- Read the instructions and the questions carefully.
- Allocate your time wisely.
- When not explicitly stated/defined, all notations and definitions follow ones given in lecture.

General Rules

- Do not cheat. The use of communication devices including mobile phones is prohibited in the examination room.
- Closed book. Closed notes.
- Basic **calculators**, e.g. FX-991MS, are **permitted**, but borrowing is not allowed.
- Write your first name and the last three digits of your ID on each page of your examination paper
- **Units** are important.

Part A

• Feb 21, 2011

• 45 Minutes

- Check your group assignment.
- **Group a**: 1:15 2:00 PM
 - Do not leave the exam room until the end of the allotted time.
- Group b: 2:15 3:00 PM Arrive at least 5 minutes early
- Same rules as midterm....

Instructions for Part A

- When possible, record at least two decimal places from the DMM. Do not write 12 mA when you see 12.00 mA on the DMM's display.
- May use any equipment available on your workbench to solve your questions or verify your answers.
 - May request for new/more resistors/capacitors/inductors/opamps
- The TAs will not help you debug your circuit.
- Clean your desk/bench before you leave the exam room.

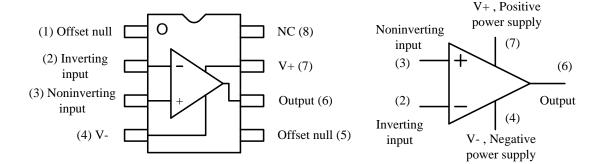
Instructions for Part A (Con't)

- For the problems that ask for **TA's signatures**...
 - Lack of the signature(s) = 0 for the whole part.
 - Having the signatures mean that the values recorded are the same as the values measured.
 - These signatures do not guarantee that you have the correct answers.
- Power Supply:

The **red light** should be off if you connect the circuit correctly.

- Turn the power supply off immediately and fix your circuit before you turn the power supply on again.
- Red light > 10s = 3 pt off your final score (each time)

Part B


- March 11, 2011
- 09:00 11:00 AM
- BKD 3507
- Your scores depend strongly on your explanation. If the explanation is incomplete, zero score may be given even when the answers are correct.

Study

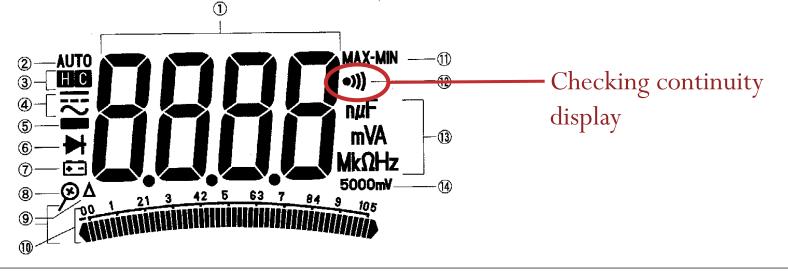
- Lab manuals + slides (posted on the web)
- Make sure that you know how to do all the quiz questions
 - Some of these are included in the practice problems
- Do not forget how to
 - Use the DMM to measure current
 - "break the circuit"
 - Read resistor color codes
 - Green, blue, red = 5.6k Ω
 - Read capacitor values
 - $474 = 0.47 \,\mu\text{F}$

Common mistakes

- How to set up the oscilloscope.
- Know the difference between the DC and AC modes of the DMM
 - Know the difference between V_{DC} , V_{AC} , V_{RMS}
- Know the difference between the DC and AC modes of the **oscilloscopes**
- 50Ω inside the **function generator**.
- The op-amp pins info will be provided.

Tips 1

- Try to guess what would be the expected results for each of the problems.
 - This is also why calculator is allowed.
 - Make it easy to know whether something is wrong with your connections/circuit elements


Tips 2

- When the DMM has low battery, it can not make accurate measurement.
- Symptoms
 - Battery discharge warning display
 - Screen starts to fade away.
 - Resistance measurement gives wrong value.

Battery discharge warning display

Tips 3: Continuity Test

- It is very easy to check for broken wire using DMM.
- In the ohmmeter mode, press the select button so that the speaker symbol appear on your screen. Checking continuity display
 - DMM **beeps** = there is good continuity, or a good path that allows current to flow.
 - If there is no continuity, the DMM won't beep.
 - Do not forget to press the select button again (the speaker symbol should disappear) when you want to measure the resistance value.

DMM: DC vs. AC

Definitions

- V_{DC} = Measured value of the voltage using DMM in DC mode
- V_{AC} = Measured value of the voltage using DMM in AC mode
- Math:

•
$$\mathbf{V}_{\mathbf{DC}}$$
 = Average value = DC offset voltage = DC component
 $\mathbf{V}_{\mathbf{DC}} = \overline{v(t)} = \frac{1}{T} \int_{t_0}^{t_0+T} v(t) dt$
• $\mathbf{V}_{\mathbf{RMS}}$ = RMS value
 $\mathbf{V}_{\mathbf{RMS}} = \sqrt{\overline{v^2(t)}} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0+T} v^2(t) dt}$
• $\mathbf{V}_{\mathbf{AC}}$
 $\mathbf{V}_{\mathbf{AC}} = \sqrt{(v(t) - V_{DC})^2} = \sqrt{\mathbf{V}_{\mathbf{RMS}}^2 - \mathbf{V}_{\mathbf{DC}}^2}$

Tips 4: DMM

- When $V_{DC} = 0$, we have $V_{AC} = V_{RMS}$.
- For square waveform (w/ or w/o DC offset),

$$V_{AC} = \frac{V_{p-p}}{2}$$

• For sinusoidal waveform (w/ or w/o DC offset),

$$v(t) = A\sin(2\pi ft + \phi) + V_{DC}$$
$$V_{AC} = \frac{V_{p-p}}{2\sqrt{2}} = \frac{A}{\sqrt{2}}$$

Today...

• Work on Problem 1-4 (and possibly 5, if time permitted)

Answers

- Problem 1
 - $V_{DC} = 1.000V, V_{AC} = 1.500V$
 - $V_{DC} = 2.000V, V_{AC} = 1.500V$
- Problem 2
 - $V_{1,RMS} = 0.225V$
 - $V_{2,RMS} = 0.451V$
 - $I_{1,RMS} = 0.23 \text{ mA}$
- Problem 3
 - $V_{p-p} = 3V$
 - $V_{RMS} = 0.678V$
 - $V_{RMS} = 0.509V$
 - $V_{RMS} = 1.01V$
 - $V_{RMS} = 0.95V$

• Problem 4

	V _{p-p}	V _{AC}	V _{DC}
V _{in}	2 V	0.675V	0.016V
V _{out}	0.5 V	0.173V	0.116V

• Problem 5

•
$$V_{in,RMS} = 1.336V$$

f (kHz)	C (µF)	V _{out,RMS}
3	0.01	0.535V
3	0.001	5.12V
2	0.01	0.807V
2	0.001	6.68V